⚠️ Consult the README for warnings about using and building on this data. Also review Why It’s So Freaking Hard To Make A Good COVID-19 Model and Ten Considerations Before You Create Another Chart About COVID-19.

Data license: LICENSE · Data source: The New York Times · About: simonw/covid-19-datasette

23,229 rows where state = "Pennsylvania" sorted by date descending

View and edit SQL

Suggested facets: date (date)

fips

county

state

  • Pennsylvania · 23,229
Link rowid date ▲ county state fips cases deaths
1084978 2021-03-03 Adams Pennsylvania 42001 7332 151
1084979 2021-03-03 Allegheny Pennsylvania 42003 77239 1734
1084980 2021-03-03 Armstrong Pennsylvania 42005 4918 116
1084981 2021-03-03 Beaver Pennsylvania 42007 12336 351
1084982 2021-03-03 Bedford Pennsylvania 42009 3817 129
1084983 2021-03-03 Berks Pennsylvania 42011 35888 904
1084984 2021-03-03 Blair Pennsylvania 42013 10646 302
1084985 2021-03-03 Bradford Pennsylvania 42015 4414 78
1084986 2021-03-03 Bucks Pennsylvania 42017 45456 1136
1084987 2021-03-03 Butler Pennsylvania 42019 14013 369
1084988 2021-03-03 Cambria Pennsylvania 42021 11749 395
1084989 2021-03-03 Cameron Pennsylvania 42023 261 7
1084990 2021-03-03 Carbon Pennsylvania 42025 4902 152
1084991 2021-03-03 Centre Pennsylvania 42027 13000 211
1084992 2021-03-03 Chester Pennsylvania 42029 30878 730
1084993 2021-03-03 Clarion Pennsylvania 42031 2700 84
1084994 2021-03-03 Clearfield Pennsylvania 42033 6334 114
1084995 2021-03-03 Clinton Pennsylvania 42035 2824 57
1084996 2021-03-03 Columbia Pennsylvania 42037 4651 124
1084997 2021-03-03 Crawford Pennsylvania 42039 6412 136
1084998 2021-03-03 Cumberland Pennsylvania 42041 16652 484
1084999 2021-03-03 Dauphin Pennsylvania 42043 20698 496
1085000 2021-03-03 Delaware Pennsylvania 42045 41224 1288
1085001 2021-03-03 Elk Pennsylvania 42047 2342 35
1085002 2021-03-03 Erie Pennsylvania 42049 17460 383
1085003 2021-03-03 Fayette Pennsylvania 42051 10528 266
1085004 2021-03-03 Forest Pennsylvania 42053 1380 21
1085005 2021-03-03 Franklin Pennsylvania 42055 12586 325
1085006 2021-03-03 Fulton Pennsylvania 42057 1136 14
1085007 2021-03-03 Greene Pennsylvania 42059 2684 33
1085008 2021-03-03 Huntingdon Pennsylvania 42061 4226 124
1085009 2021-03-03 Indiana Pennsylvania 42063 5104 160
1085010 2021-03-03 Jefferson Pennsylvania 42065 2814 90
1085011 2021-03-03 Juniata Pennsylvania 42067 1827 81
1085012 2021-03-03 Lackawanna Pennsylvania 42069 14072 423
1085013 2021-03-03 Lancaster Pennsylvania 42071 43951 1038
1085014 2021-03-03 Lawrence Pennsylvania 42073 6076 184
1085015 2021-03-03 Lebanon Pennsylvania 42075 12902 259
1085016 2021-03-03 Lehigh Pennsylvania 42077 30975 773
1085017 2021-03-03 Luzerne Pennsylvania 42079 25033 735
1085018 2021-03-03 Lycoming Pennsylvania 42081 9380 246
1085019 2021-03-03 McKean Pennsylvania 42083 3051 62
1085020 2021-03-03 Mercer Pennsylvania 42085 8108 240
1085021 2021-03-03 Mifflin Pennsylvania 42087 4603 169
1085022 2021-03-03 Monroe Pennsylvania 42089 9783 269
1085023 2021-03-03 Montgomery Pennsylvania 42091 54364 1559
1085024 2021-03-03 Montour Pennsylvania 42093 1783 60
1085025 2021-03-03 Northampton Pennsylvania 42095 27090 649
1085026 2021-03-03 Northumberland Pennsylvania 42097 8018 324
1085027 2021-03-03 Perry Pennsylvania 42099 2906 85
1085028 2021-03-03 Philadelphia Pennsylvania 42101 119245 3156
1085029 2021-03-03 Pike Pennsylvania 42103 2568 48
1085030 2021-03-03 Potter Pennsylvania 42105 944 21
1085031 2021-03-03 Schuylkill Pennsylvania 42107 12094 369
1085032 2021-03-03 Snyder Pennsylvania 42109 3052 80
1085033 2021-03-03 Somerset Pennsylvania 42111 6696 186
1085034 2021-03-03 Sullivan Pennsylvania 42113 310 18
1085035 2021-03-03 Susquehanna Pennsylvania 42115 1717 53
1085036 2021-03-03 Tioga Pennsylvania 42117 2446 94
1085037 2021-03-03 Union Pennsylvania 42119 5273 81
1085038 2021-03-03 Venango Pennsylvania 42121 3376 84
1085039 2021-03-03 Warren Pennsylvania 42123 2189 98
1085040 2021-03-03 Washington Pennsylvania 42125 13795 260
1085041 2021-03-03 Wayne Pennsylvania 42127 3075 66
1085042 2021-03-03 Westmoreland Pennsylvania 42129 26938 676
1085043 2021-03-03 Wyoming Pennsylvania 42131 1171 42
1085044 2021-03-03 York Pennsylvania 42133 36033 727
1081732 2021-03-02 Adams Pennsylvania 42001 7298 151
1081733 2021-03-02 Allegheny Pennsylvania 42003 77053 1730
1081734 2021-03-02 Armstrong Pennsylvania 42005 4914 116
1081735 2021-03-02 Beaver Pennsylvania 42007 12299 350
1081736 2021-03-02 Bedford Pennsylvania 42009 3814 129
1081737 2021-03-02 Berks Pennsylvania 42011 35791 903
1081738 2021-03-02 Blair Pennsylvania 42013 10637 301
1081739 2021-03-02 Bradford Pennsylvania 42015 4399 78
1081740 2021-03-02 Bucks Pennsylvania 42017 45320 1135
1081741 2021-03-02 Butler Pennsylvania 42019 13978 369
1081742 2021-03-02 Cambria Pennsylvania 42021 11723 395
1081743 2021-03-02 Cameron Pennsylvania 42023 261 7
1081744 2021-03-02 Carbon Pennsylvania 42025 4894 151
1081745 2021-03-02 Centre Pennsylvania 42027 12966 210
1081746 2021-03-02 Chester Pennsylvania 42029 30776 729
1081747 2021-03-02 Clarion Pennsylvania 42031 2700 83
1081748 2021-03-02 Clearfield Pennsylvania 42033 6308 114
1081749 2021-03-02 Clinton Pennsylvania 42035 2812 57
1081750 2021-03-02 Columbia Pennsylvania 42037 4623 124
1081751 2021-03-02 Crawford Pennsylvania 42039 6391 136
1081752 2021-03-02 Cumberland Pennsylvania 42041 16597 483
1081753 2021-03-02 Dauphin Pennsylvania 42043 20645 495
1081754 2021-03-02 Delaware Pennsylvania 42045 41132 1277
1081755 2021-03-02 Elk Pennsylvania 42047 2338 35
1081756 2021-03-02 Erie Pennsylvania 42049 17426 380
1081757 2021-03-02 Fayette Pennsylvania 42051 10508 266
1081758 2021-03-02 Forest Pennsylvania 42053 1380 21
1081759 2021-03-02 Franklin Pennsylvania 42055 12556 324
1081760 2021-03-02 Fulton Pennsylvania 42057 1134 14
1081761 2021-03-02 Greene Pennsylvania 42059 2680 33
1081762 2021-03-02 Huntingdon Pennsylvania 42061 4210 124
1081763 2021-03-02 Indiana Pennsylvania 42063 5099 160
1081764 2021-03-02 Jefferson Pennsylvania 42065 2789 90

Next page

Advanced export

JSON shape: default, array, newline-delimited

CSV options:

CREATE TABLE [ny_times_us_counties] (
   [date] TEXT,
   [county] TEXT,
   [state] TEXT,
   [fips] INTEGER,
   [cases] INTEGER,
   [deaths] INTEGER
);
CREATE INDEX [idx_ny_times_us_counties_state]
    ON [ny_times_us_counties] ([state]);
CREATE INDEX [idx_ny_times_us_counties_county]
    ON [ny_times_us_counties] ([county]);
CREATE INDEX [idx_ny_times_us_counties_fips]
    ON [ny_times_us_counties] ([fips]);
CREATE INDEX [idx_ny_times_us_counties_date]
    ON [ny_times_us_counties] ([date]);