⚠️ Consult the README for warnings about using and building on this data. Also review Why It’s So Freaking Hard To Make A Good COVID-19 Model and Ten Considerations Before You Create Another Chart About COVID-19.

Data license: LICENSE · Data source: The New York Times · About: simonw/covid-19-datasette

21,040 rows where state = "South Dakota" sorted by date descending

View and edit SQL

Suggested facets: date (date)

fips

county

state

  • South Dakota · 21,040
Link rowid date ▲ county state fips cases deaths
1098161 2021-03-07 Aurora South Dakota 46003 454 15
1098162 2021-03-07 Beadle South Dakota 46005 2789 39
1098163 2021-03-07 Bennett South Dakota 46007 382 9
1098164 2021-03-07 Bon Homme South Dakota 46009 1508 25
1098165 2021-03-07 Brookings South Dakota 46011 3621 37
1098166 2021-03-07 Brown South Dakota 46013 5175 89
1098167 2021-03-07 Brule South Dakota 46015 695 9
1098168 2021-03-07 Buffalo South Dakota 46017 420 13
1098169 2021-03-07 Butte South Dakota 46019 986 20
1098170 2021-03-07 Campbell South Dakota 46021 131 4
1098171 2021-03-07 Charles Mix South Dakota 46023 1309 21
1098172 2021-03-07 Clark South Dakota 46025 375 5
1098173 2021-03-07 Clay South Dakota 46027 1810 15
1098174 2021-03-07 Codington South Dakota 46029 4029 77
1098175 2021-03-07 Corson South Dakota 46031 472 12
1098176 2021-03-07 Custer South Dakota 46033 763 12
1098177 2021-03-07 Davison South Dakota 46035 2971 64
1098178 2021-03-07 Day South Dakota 46037 673 28
1098179 2021-03-07 Deuel South Dakota 46039 476 8
1098180 2021-03-07 Dewey South Dakota 46041 1423 26
1098181 2021-03-07 Douglas South Dakota 46043 434 9
1098182 2021-03-07 Edmunds South Dakota 46045 486 12
1098183 2021-03-07 Fall River South Dakota 46047 546 15
1098184 2021-03-07 Faulk South Dakota 46049 362 13
1098185 2021-03-07 Grant South Dakota 46051 980 38
1098186 2021-03-07 Gregory South Dakota 46053 547 30
1098187 2021-03-07 Haakon South Dakota 46055 256 10
1098188 2021-03-07 Hamlin South Dakota 46057 722 38
1098189 2021-03-07 Hand South Dakota 46059 343 6
1098190 2021-03-07 Hanson South Dakota 46061 367 4
1098191 2021-03-07 Harding South Dakota 46063 92 1
1098192 2021-03-07 Hughes South Dakota 46065 2321 36
1098193 2021-03-07 Hutchinson South Dakota 46067 790 26
1098194 2021-03-07 Hyde South Dakota 46069 139 1
1098195 2021-03-07 Jackson South Dakota 46071 280 14
1098196 2021-03-07 Jerauld South Dakota 46073 275 16
1098197 2021-03-07 Jones South Dakota 46075 85 0
1098198 2021-03-07 Kingsbury South Dakota 46077 647 14
1098199 2021-03-07 Lake South Dakota 46079 1219 18
1098200 2021-03-07 Lawrence South Dakota 46081 2834 45
1098201 2021-03-07 Lincoln South Dakota 46083 7856 77
1098202 2021-03-07 Lyman South Dakota 46085 603 10
1098203 2021-03-07 Marshall South Dakota 46091 337 5
1098204 2021-03-07 McCook South Dakota 46087 750 24
1098205 2021-03-07 McPherson South Dakota 46089 241 4
1098206 2021-03-07 Meade South Dakota 46093 2618 31
1098207 2021-03-07 Mellette South Dakota 46095 257 2
1098208 2021-03-07 Miner South Dakota 46097 274 9
1098209 2021-03-07 Minnehaha South Dakota 46099 28333 334
1098210 2021-03-07 Moody South Dakota 46101 620 17
1098211 2021-03-07 Oglala Lakota South Dakota 46102 2065 49
1098212 2021-03-07 Pennington South Dakota 46103 12994 188
1098213 2021-03-07 Perkins South Dakota 46105 348 14
1098214 2021-03-07 Potter South Dakota 46107 377 4
1098215 2021-03-07 Roberts South Dakota 46109 1224 36
1098216 2021-03-07 Sanborn South Dakota 46111 335 3
1098217 2021-03-07 Spink South Dakota 46115 803 25
1098218 2021-03-07 Stanley South Dakota 46117 335 2
1098219 2021-03-07 Sully South Dakota 46119 137 3
1098220 2021-03-07 Todd South Dakota 46121 1219 29
1098221 2021-03-07 Tripp South Dakota 46123 713 16
1098222 2021-03-07 Turner South Dakota 46125 1074 53
1098223 2021-03-07 Union South Dakota 46127 2006 39
1098224 2021-03-07 Walworth South Dakota 46129 729 15
1098225 2021-03-07 Yankton South Dakota 46135 2818 28
1098226 2021-03-07 Ziebach South Dakota 46137 336 9
1094913 2021-03-06 Aurora South Dakota 46003 454 15
1094914 2021-03-06 Beadle South Dakota 46005 2785 39
1094915 2021-03-06 Bennett South Dakota 46007 382 9
1094916 2021-03-06 Bon Homme South Dakota 46009 1507 25
1094917 2021-03-06 Brookings South Dakota 46011 3614 37
1094918 2021-03-06 Brown South Dakota 46013 5167 89
1094919 2021-03-06 Brule South Dakota 46015 694 9
1094920 2021-03-06 Buffalo South Dakota 46017 420 13
1094921 2021-03-06 Butte South Dakota 46019 984 20
1094922 2021-03-06 Campbell South Dakota 46021 131 4
1094923 2021-03-06 Charles Mix South Dakota 46023 1309 21
1094924 2021-03-06 Clark South Dakota 46025 374 5
1094925 2021-03-06 Clay South Dakota 46027 1809 15
1094926 2021-03-06 Codington South Dakota 46029 4024 77
1094927 2021-03-06 Corson South Dakota 46031 472 12
1094928 2021-03-06 Custer South Dakota 46033 761 12
1094929 2021-03-06 Davison South Dakota 46035 2967 64
1094930 2021-03-06 Day South Dakota 46037 669 28
1094931 2021-03-06 Deuel South Dakota 46039 475 8
1094932 2021-03-06 Dewey South Dakota 46041 1421 26
1094933 2021-03-06 Douglas South Dakota 46043 434 9
1094934 2021-03-06 Edmunds South Dakota 46045 484 12
1094935 2021-03-06 Fall River South Dakota 46047 541 15
1094936 2021-03-06 Faulk South Dakota 46049 361 13
1094937 2021-03-06 Grant South Dakota 46051 981 38
1094938 2021-03-06 Gregory South Dakota 46053 545 30
1094939 2021-03-06 Haakon South Dakota 46055 256 10
1094940 2021-03-06 Hamlin South Dakota 46057 721 38
1094941 2021-03-06 Hand South Dakota 46059 341 6
1094942 2021-03-06 Hanson South Dakota 46061 366 4
1094943 2021-03-06 Harding South Dakota 46063 91 1
1094944 2021-03-06 Hughes South Dakota 46065 2318 36
1094945 2021-03-06 Hutchinson South Dakota 46067 790 26
1094946 2021-03-06 Hyde South Dakota 46069 139 1

Next page

Advanced export

JSON shape: default, array, newline-delimited

CSV options:

CREATE TABLE [ny_times_us_counties] (
   [date] TEXT,
   [county] TEXT,
   [state] TEXT,
   [fips] INTEGER,
   [cases] INTEGER,
   [deaths] INTEGER
);
CREATE INDEX [idx_ny_times_us_counties_state]
    ON [ny_times_us_counties] ([state]);
CREATE INDEX [idx_ny_times_us_counties_county]
    ON [ny_times_us_counties] ([county]);
CREATE INDEX [idx_ny_times_us_counties_fips]
    ON [ny_times_us_counties] ([fips]);
CREATE INDEX [idx_ny_times_us_counties_date]
    ON [ny_times_us_counties] ([date]);